Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.141
Filtrar
1.
Cell Biochem Funct ; 42(3): e4010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613217

RESUMO

Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-ß1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-ß1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-ß1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-ß1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-ß1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-ß1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-ß1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.


Assuntos
Células-Tronco Mesenquimais , Neoplasias do Colo do Útero , Feminino , Humanos , Antígeno B7-H1 , Adenosina/farmacologia , Fator de Crescimento Transformador beta1 , Microambiente Tumoral
2.
Mol Cancer ; 23(1): 79, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658974

RESUMO

R-loops are prevalent three-stranded nucleic acid structures, comprising a DNA-RNA hybrid and a displaced single-stranded DNA, that frequently form during transcription and may be attributed to genomic stability and gene expression regulation. It was recently discovered that RNA modification contributes to maintain the stability of R-loops such as N6-methyladenosine (m6A). Yet, m6A-modified R-loops in regulating gene transcription remains poorly understood. Here, we demonstrated that insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) recognize R-loops in an m6A-dependent way. Consequently, IGF2BPs overexpression leads to increased overall R-loop levels, cell migration inhibition, and cell growth retardation in prostate cancer (PCa) via precluding the binding of DNA methyltransferase 1(DNMT1) to semaphorin 3 F (SEMA3F) promoters. Moreover, the K homology (KH) domains of IGF2BPs are required for their recognition of m6A-containing R-loops and are required for tumor suppressor functions. Overexpression of SEMA3F markedly enhanced docetaxel chemosensitivity in prostate cancer via regulating Hippo pathway. Our findings point to a distinct R-loop resolution pathway mediated by IGF2BPs, emphasizing the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology.The manuscript summarizes the new role of N6-methyladenosine in epigenetic regulation, we introduce the distinct R-loop resolution mediated by IGF2BP proteins in an m6A-dependent way, which probably lead to the growth retardation and docetaxel chemotherapy resistance in prostate cancer. Moreover, our findings first emphasized the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology. In addition, our research provides a novel RBM15/IGF2BPs/DNMT1 trans-omics regulation m6A axis, indicating the new crosstalk between RNA m6A methylation and DNA methylation in prostate cancer.


Assuntos
Adenosina/análogos & derivados , Docetaxel , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Estruturas R-Loop , Masculino , Humanos , Docetaxel/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Adenosina/farmacologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regiões Promotoras Genéticas , Antineoplásicos/farmacologia
3.
World J Gastroenterol ; 30(12): 1764-1776, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38617741

RESUMO

BACKGROUND: Increasing evidence has demonstrated that N6-methyladenosine (m6A) RNA modification plays an essential role in a wide range of pathological conditions. Impaired autophagy is a critical hallmark of acute pancreatitis (AP). AIM: To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP. METHODS: The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells (MPC-83), and the results were confirmed by the levels of amylase and inflammatory factors. Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes. ZKSCAN3 and ALKBH5 were knocked down to study the function in AP. A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH. RESULTS: The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established. The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP. The expression of ZKSCAN3 was upregulated in AP. Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors, LC3-II/I and SQSTM1. Furthermore, ALKBH5 was upregulated in AP. Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP. Notably, the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA. The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP. Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA, which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner. CONCLUSION: ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP, thereby aggravating the severity of the disease.


Assuntos
Pancreatite , Animais , Camundongos , Doença Aguda , Adenosina/farmacologia , Amilases , Autofagia , Desmetilação , Modelos Animais de Doenças , Pancreatite/induzido quimicamente , Pancreatite/genética , RNA Mensageiro , Proteína Sequestossoma-1 , Fatores de Transcrição
4.
Viruses ; 16(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543718

RESUMO

Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.


Assuntos
Desoxiadenosinas , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Chlorocebus aethiops , Lactente , Criança , Humanos , Pré-Escolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacologia , Células CACO-2 , Replicação Viral , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Antivirais/farmacologia
5.
Biomed Pharmacother ; 173: 116401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460363

RESUMO

Adenosine regulates multiple physiological processes through the activation of four receptor subtypes, of which the A2B adenosine receptor (A2BAR) has the lowest affinity for adenosine. Being the adenosine receptor subtype most prominently expressed in epidermis, we recently described the antiproliferative and anti-inflammatory effect of the selective A2BAR agonist BAY60-6583 (BAY) in human keratinocytes stimulated with 12-O-tetradecanoylphorbol-13-acetate (TPA), so we sought to establish the effect of topical application of BAY in a model of murine epidermal hyperplasia. Topical application of BAY (1 or 10 µg/site) prevented the inflammatory reaction and skin lesions induced by TPA, minimizing hyperproliferation and acanthosis, as well as the expression of specific markers of proliferative keratinocytes. On the other hand, pre-treatment with the selective A2BAR antagonist, PSB-1115 (PSB, 5 or 50 µg/site) reversed these beneficial effects. Additionally, BAY application normalized the expression of epidermal barrier proteins, whose integrity is altered in inflammatory skin diseases, while treatment with the antagonist alone worsened it. Our results, besides confirming the anti-inflammatory and antiproliferative effects of the A2BAR agonist, further demonstrate a role of A2BAR activation to preserve the epidermal barrier. Therefore, the activation of A2BAR may constitute a possible new pharmacological target for the treatment of skin inflammatory diseases such as psoriasis.


Assuntos
Adenosina , Dermatopatias , Camundongos , Animais , Humanos , Adenosina/farmacologia , Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Modelos Animais de Doenças , Epiderme , Anti-Inflamatórios/farmacologia , Dermatopatias/patologia
6.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38429106

RESUMO

Adenosinergic modulation in the PFC is recognized for its involvement in various behavioral aspects including sleep homoeostasis, decision-making, spatial working memory and anxiety. While the principal cells of layer 6 (L6) exhibit a significant morphological diversity, the detailed cell-specific regulatory mechanisms of adenosine in L6 remain unexplored. Here, we quantitatively analyzed the morphological and electrophysiological parameters of L6 neurons in the rat medial prefrontal cortex (mPFC) using whole-cell recordings combined with morphological reconstructions. We were able to identify two different morphological categories of excitatory neurons in the mPFC of both juvenile and young adult rats with both sexes. These categories were characterized by a leading dendrite that was oriented either upright (toward the pial surface) or inverted (toward the white matter). These two excitatory neuron subtypes exhibited different electrophysiological and synaptic properties. Adenosine at a concentration of 30 µM indiscriminately suppressed connections with either an upright or an inverted presynaptic excitatory neuron. However, using lower concentrations of adenosine (10 µM) revealed that synapses originating from L6 upright neurons have a higher sensitivity to adenosine-induced inhibition of synaptic release. Adenosine receptor activation causes a reduction in the probability of presynaptic neurotransmitter release that could be abolished by specifically blocking A1 adenosine receptors (A1ARs) using 8-cyclopentyltheophylline (CPT). Our results demonstrate a differential expression level of A1ARs at presynaptic sites of two functionally and morphologically distinct subpopulations of L6 principal neurons, suggesting the intricate functional role of adenosine in neuronal signaling in the brain.


Assuntos
Neurônios , Células Piramidais , Feminino , Masculino , Ratos , Animais , Células Piramidais/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Córtex Pré-Frontal/fisiologia , Adenosina/farmacologia , Adenosina/fisiologia
7.
Toxicol In Vitro ; 96: 105788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320684

RESUMO

Nucleosides and nucleotides at µM concentrations stimulated a 300% increase in acid secretion in HepG2 cells, which was quantitatively accounted for as increased export of lactate generated by glycogenolysis. Agonist selectivity encompassed nucleosides and nucleotides for all 5 natural nucleobases and, along with antagonist profiles, was inconsistent with a role for purinergic receptors in mediating this activity. Agonist catabolism did not contribute significantly to either low selectivity or lactate production. Lactate production was driven by an increase in ATP turnover of as much as 56%. For some agonists, especially adenosine, ATP turnover decreased precipitously at mM concentrations, correlating with known adenosine-stimulated apoptosis. We propose that nucleoside/nucleotide agonists induce a futile energy cycle via a novel mechanism, which results in increased ATP turnover and initiates a continuum of events that for some agonists culminates in apoptosis.


Assuntos
Ácido Láctico , Nucleotídeos , Humanos , Células Hep G2 , Adenosina/farmacologia , Ligantes , Concentração de Íons de Hidrogênio , Trifosfato de Adenosina
8.
Am J Physiol Heart Circ Physiol ; 326(5): H1105-H1116, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391313

RESUMO

Whether cerebral sympathetic-mediated vasomotor control can be modulated by local brain activity remains unknown. This study tested the hypothesis that the application or removal of a cognitive task during a cold pressor test (CPT) would attenuate and restore decreases in cerebrovascular conductance (CVC), respectively. Middle cerebral artery blood velocity (transcranial Doppler) and mean arterial pressure (finger photoplethysmography) were examined in healthy adults (n = 16; 8 females and 8 males) who completed a control CPT, followed by a CPT coupled with a cognitive task administered either 1) 30 s after the onset of the CPT and for the duration of the CPT or 2) at the onset of the CPT and terminated 30 s before the end of the CPT (condition order was counterbalanced). The major finding was that the CPT decreased the index of CVC, and such decreases were abolished when a cognitive task was completed concurrently and restored when the cognitive task was removed. As a secondary experiment, vasomotor interactions between sympathetic transduction pathways (α1-adrenergic and Y1-peptidergic) and compounds implicated in cerebral blood flow control [adenosine, and adenosine triphosphate (ATP)] were explored in isolated porcine cerebral arteries (wire myography). The data reveal α1-receptor agonism potentiated vasorelaxation modestly in response to adenosine, and preexposure to ATP attenuated contractile responses to α1-agonism. Overall, the data suggest a cognitive task attenuates decreases in CVC during sympathoexcitation, possibly related to an interaction between purinergic and α1-adrenergic signaling pathways.NEW & NOTEWORTHY The present study demonstrates that the cerebrovascular conductance index decreases during sympathoexcitation and this response can be positively and negatively modulated by the application or withdrawal of a nonexercise cognitive task. Furthermore, isolated vessel experiments reveal that cerebral α1-adrenergic agonism potentiates adenosine-mediated vasorelaxation and ATP attenuates α1-adrenergic-mediated vasocontraction.


Assuntos
Trifosfato de Adenosina , Simpatolíticos , Adulto , Masculino , Feminino , Humanos , Animais , Suínos , Velocidade do Fluxo Sanguíneo/fisiologia , Adrenérgicos , Adenosina/farmacologia , Circulação Cerebrovascular/fisiologia , Pressão Sanguínea/fisiologia , Temperatura Baixa
9.
Kidney Blood Press Res ; 49(1): 196-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38368866

RESUMO

INTRODUCTION: Acute kidney injury (AKI) is a common clinical syndrome associated with high morbidity and mortality. Inhibition of the methyltransferase enhancer of zeste homolog 2 (EZH2) by its inhibitor 3-deazaneplanocin A (3-DZNeP) exerts renal benefits in acute renal ischemia-reperfusion injury (IRI). However, the underlying mechanisms are not completely known. This study aimed to elucidate the pathological mechanism of EZH2 in renal IRI by combination of multi-omics analysis and expression profiling in a public clinical cohort. METHODS: In this study, C57BL/6 J mice were used to establish the AKI model, which were treated with 3-DZNeP for 24 h. Kidney samples were collected for RNA-seq analysis, which was combined with publicly available EZH2 chromatin immunoprecipitation sequencing (ChIP-seq) data of mouse embryonic stem cell for a joint analysis to identify differentially expressed genes. Several selected differentially expressed genes were verified by quantitative PCR. Finally, single-nucleus sequencing data and expression profiling in public clinical datasets were used to confirm the negative correlation of the selected genes with EZH2 expression. RESULTS: 3-DZNeP treatment significantly improved renal pathology and function in IRI mice. Through RNA-seq analysis combined with EZH2 ChIP-seq database, 162 differentially expressed genes were found, which might be involved in EZH2-mediated pathology in IRI kidneys. Four differential expressed genes (Scd1, Cidea, Ghr, and Kl) related to lipid metabolism or cell growth were selected based on Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis, which were validated by quantitative PCR. Data from single-nucleus RNA sequencing revealed the negative correlation of these four genes with Ezh2 expression in different subpopulations of proximal tubular cells in IRI mice in a different pattern. Finally, the negative correlation of these four genes with EZH2 expression was confirmed in patients with AKI in two clinical datasets. CONCLUSIONS: Our study indicates that Scd1, Cidea, Ghr, and Kl are downstream genes regulated by EZH2 in AKI. Upregulation of EZH2 in AKI inhibits the expression of these four genes in a different population of proximal tubular cells to minimize normal physiological function and promote acute or chronic cell injuries following AKI.


Assuntos
Injúria Renal Aguda , Adenosina , Adenosina/análogos & derivados , Proteína Potenciadora do Homólogo 2 de Zeste , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Camundongos , Adenosina/farmacologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Multiômica
10.
Br J Anaesth ; 132(4): 746-757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310069

RESUMO

BACKGROUND: The mechanisms for spinal cord stimulation (SCS) to alleviate chronic pain are only partially known. We aimed to elucidate the roles of adenosine A1 and A3 receptors (A1R, A3R) in the inhibition of spinal nociceptive transmission by SCS, and further explored whether 2'-deoxycoformycin (dCF), an inhibitor of adenosine deaminase, can potentiate SCS-induced analgesia. METHODS: We used RNAscope and immunoblotting to examine the distributions of adora1 and adora3 expression, and levels of A1R and A3R proteins in the spinal cord of rats after tibial-spared nerve injury (SNI-t). Electrophysiology recording was conducted to examine how adenosine receptor antagonists, virus-mediated adora3 knockdown, and dCF affect SCS-induced inhibition of C-fibre-evoked spinal local field potential (C-LFP). RESULTS: Adora1 was predominantly expressed in neurones, whereas adora3 is highly expressed in microglial cells in the rat spinal cord. Spinal application of antagonists (100 µl) of A1R (8-cyclopentyl-1,3-dipropylxanthine [DPCPX], 50 µM) and A3R (MRS1523, 200 nM) augmented C-LFP in SNI-t rats (DPCPX: 1.39 [0.18] vs vehicle: 0.98 [0.05], P=0.046; MRS1523: 1.21 [0.07] vs vehicle: 0.91 [0.03], P=0.002). Both drugs also blocked inhibition of C-LFP by SCS. Conversely, dCF (0.1 mM) enhanced SCS-induced C-LFP inhibition (dCF: 0.60 [0.04] vs vehicle: 0.85 [0.02], P<0.001). In the behaviour study, dCF (100 nmol 15 µl-1, intrathecal) also enhanced inhibition of mechanical hypersensitivity by SCS in SNI-t rats. CONCLUSIONS: Spinal A1R and A3R signalling can exert tonic suppression and also contribute to SCS-induced inhibition of spinal nociceptive transmission after nerve injury. Inhibition of adenosine deaminase may represent a novel adjuvant pharmacotherapy to enhance SCS-induced analgesia.


Assuntos
Adenosina Desaminase , Estimulação da Medula Espinal , Ratos , Animais , Adenosina/farmacologia , Medula Espinal , Dor
11.
Cancer Res ; 84(6): 827-840, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241695

RESUMO

N6-methyladenosine (m6A) RNA modification is the most common and conserved epigenetic modification in mRNA and has been shown to play important roles in cancer biology. As the m6A reader YTHDF1 has been reported to promote progression of hepatocellular carcinoma (HCC), it represents a potential therapeutic target. In this study, we evaluated the clinical significance of YTHDF1 using human HCC samples and found that YTHDF1 was significantly upregulated in HCCs with high stemness scores and was positively associated with recurrence and poor prognosis. Analysis of HCC spheroids revealed that YTHDF1 was highly expressed in liver cancer stem cells (CSC). Stem cell-specific conditional Ythdf1 knockin (CKI) mice treated with diethylnitrosamine showed elevated tumor burden as compared with wild-type mice. YTHDF1 promoted CSCs renewal and resistance to the multiple tyrosine kinase inhibitors lenvatinib and sorafenib in patient-derived organoids and HCC cell lines, which could be abolished by catalytically inactive mutant YTHDF1. Multiomic analysis, including RNA immunoprecipitation sequencing, m6A methylated RNA immunoprecipitation sequencing, ribosome profiling, and RNA sequencing identified NOTCH1 as a direct downstream of YTHDF1. YTHDF1 bound to m6A modified NOTCH1 mRNA to enhance its stability and translation, which led to increased NOTCH1 target genes expression. NOTCH1 overexpression rescued HCC stemness in YTHDF1-deficient cells in vitro and in vivo. Lipid nanoparticles targeting YTHDF1 significantly enhanced the efficacy of lenvatinib and sorafenib in HCC in vivo. Taken together, YTHDF1 drives HCC stemness and drug resistance through an YTHDF1-m6A-NOTCH1 epitranscriptomic axis, and YTHDF1 is a potential therapeutic target for treating HCC. SIGNIFICANCE: Inhibition of YTHDF1 expression suppresses stemness of hepatocellular carcinoma cells and enhances sensitivity to targeted therapies, indicating that targeting YTHDF1 may be a promising therapeutic strategy for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Adenosina/farmacologia , RNA Mensageiro , RNA , Receptor Notch1/genética , Proteínas de Ligação a RNA/genética
12.
Int Immunopharmacol ; 128: 111557, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266451

RESUMO

BACKGROUND AND PURPOSE: Lung macrophages (LMs) are critically involved in respiratory diseases. The primary objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 (PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and CCL22) by human LMs. EXPERIMENTAL APPROACH: Primary macrophages isolated from resected human lungs were incubated with NECA, PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the culture supernatants were measured using ELISAs and enzyme immunoassays. KEY RESULTS: Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phosphodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not modulate their IL-13-induced production, regardless of the presence or absence of PGE2. CONCLUSIONS: NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced release of tumor necrosis factor alpha and M1 chemokines in human LMs.


Assuntos
Adenosina , Aminopiridinas , Benzamidas , Dinoprostona , Humanos , Dinoprostona/farmacologia , Adenosina/farmacologia , Interleucina-4/farmacologia , Interleucina-13/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Quimiocinas , Macrófagos , Fator de Necrose Tumoral alfa/farmacologia , Quimiocina CCL17 , Pulmão , Células Cultivadas , Ciclopropanos
13.
Colloids Surf B Biointerfaces ; 234: 113746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199187

RESUMO

Ischemic stroke is a neurological disease that leads to brain damage and severe cognitive impairment. In this study, extracellular vesicles(Ev) derived from mouse hippocampal cells (HT22) were used as carriers, and adenosine (Ad) was encapsulated to construct Ev-Ad to target the damaged hippocampus. The results showed that, Ev-Ad had significant antioxidant effect and inhibited apoptosis. In vivo, Ev-Ad reduced cell death and reversed inflammation in hippocampus of ischemic mice, and improved long-term memory and learning impairment by regulating the expression of the A1 receptor and the A2A receptor in the CA1 region. Thus, the developmental approach based on natural carriers that encapsulating Ad not only successfully restored nerves after ischemic stroke, but also improved cognitive impairment in the later stage of ischemic stroke convalescence. The development and design of therapeutic drugs provides a new concept and method for the treatment of cognitive impairment in the convalescent phase after ischemic stroke.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Adenosina/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Hipocampo , Vesículas Extracelulares/metabolismo , Cognição , AVC Isquêmico/metabolismo
14.
Bioorg Med Chem Lett ; 100: 129628, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280656

RESUMO

N6-[(Furan-2-yl)methyl]adenosine (kinetin riboside) and its seven synthesized analogues were examined for the ability to inhibit the growth of five human carcinoma cell lines and for comparison of normal human lung fibroblast cell line (MRC-5). Out of the compounds evaluated, 8-azakinetin riboside was shown to exhibit significant cytotoxic activity for 72 h treatment against ovarian OVCAR-3 and pancreatic MIA PaCa-2 cancer cells (IC50 = 1.1 µM) with an observed weaker effect against MRC-5 cells (IC50 = 4.6 µM). Kinetin riboside, as well as its N6-[(furan-3-yl)methyl]- and N6-[(thien-2-yl)methyl]- counterparts, also exhibited cytotoxic activities at low micromolar levels but were non-selective over MRC-5 cells.


Assuntos
Antineoplásicos , Cinetina , Neoplasias Ovarianas , Humanos , Feminino , Apoptose , Linhagem Celular Tumoral , Adenosina/farmacologia , Antineoplásicos/farmacologia , Furanos/farmacologia
15.
Talanta ; 271: 125672, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295446

RESUMO

Neutrophils play a pivotal role in innate immunity by releasing ROS through respiratory bursts to neutralize various pathogenic factors. However, excessive ROS release can cause tissue damage. Adenosine is an endogenous anti-inflammatory molecule inhibiting respiratory burst to protect the host. Adenosine aptamers with antibody-like properties and good stability are expected to act as adenosine antagonists with functional modulation capability. This study compares the effects of adenosine and its aptamer on the respiratory bursts of salivary polymorphonuclear leukocytes and circulating polymorphonuclear leukocytes using a programmable stopped-flow injection approach, ensuring rapid and efficient analysis while maintaining the neutrophils' viability. The results show that primed salivary polymorphonuclear leukocytes exhibit specificities that differ from circulating polymorphonuclear leukocytes. Adenosine aptamer can function as an inhibitory antagonist that distinguishes between physiologically controlled and excessive priming of neutrophils, showing potential application prospects in immunotherapy.


Assuntos
Neutrófilos , Explosão Respiratória , Neutrófilos/fisiologia , Adenosina/farmacologia , Espécies Reativas de Oxigênio , Anticorpos/farmacologia
16.
ACS Appl Mater Interfaces ; 16(2): 2101-2109, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166368

RESUMO

Adenosine metabolism through adenosine receptors plays a critical role in lung cancer biology. Although recent studies showed the potential of targeting adenosine receptors as drug targets for lung cancer treatment, conventional methods for investigating receptor activities often suffer from various drawbacks, including low sensitivity and slow analysis speed. In this study, adenosine receptor activities in nonsmall cell lung cancer (NSCLC) cells were monitored in real time with high sensitivity through a carbon nanotube field-effect transistor (CNT-FET). In this method, we hybridized a CNT-FET with NSCLC cells expressing A2A and A2B adenosine receptors to construct a hybrid platform. This platform could detect adenosine, an endogenous ligand of adenosine receptors, down to 1 fM in real time and sensitively discriminate adenosine among other nucleosides. Furthermore, we could also utilize the platform to detect adenosine in complicated environments, such as human serum. Notably, our hybrid platform allowed us to monitor pharmacological effects between adenosine and other drugs, including dipyridamole and theophylline, even in human serum samples. These results indicate that the NSCLC cell-hybridized CNT-FET can be a practical tool for biomedical applications, such as the evaluation and screening of drug-candidate substances.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanotubos de Carbono , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptores Purinérgicos P1 , Adenosina/farmacologia
17.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255875

RESUMO

It has been proposed that antidiabetic drugs, such as metformin and imatinib, at least in part, promote improved glucose tolerance in type 2 diabetic patients via increased production of the inflammatory cytokine GDF15. This is supported by studies, performed in rodent cell lines and mouse models, in which the addition or production of GDF15 improved beta-cell function and survival. The aim of the present study was to determine whether human beta cells produce GDF15 in response to antidiabetic drugs and, if so, to further elucidate the mechanisms by which GDF15 modulates the function and survival of such cells. The effects and expression of GDF15 were analyzed in human insulin-producing EndoC-betaH1 cells and human islets. We observed that alpha and beta cells exhibit considerable heterogeneity in GDF15 immuno-positivity. The predominant form of GDF15 present in islet and EndoC-betaH1 cells was pro-GDF15. Imatinib, but not metformin, increased pro-GDF15 levels in EndoC-betaH1 cells. Under basal conditions, exogenous GDF15 increased human islet oxygen consumption rates. In EndoC-betaH1 cells and human islets, exogenous GDF15 partially ameliorated cytokine- or palmitate + high-glucose-induced loss of function and viability. GDF15-induced cell survival was paralleled by increased inosine levels, suggesting a more efficient disposal of intracellular adenosine. Knockdown of adenosine deaminase, the enzyme that converts adenosine to inosine, resulted in lowered inosine levels and loss of protection against cytokine- or palmitate + high-glucose-induced cell death. It is concluded that imatinib-induced GDF15 production may protect human beta cells partially against inflammatory and metabolic stress. Furthermore, it is possible that the GDF15-mediated activation of adenosine deaminase and the increased disposal of intracellular adenosine participate in protection against beta-cell death.


Assuntos
Insulinas , Metformina , Camundongos , Humanos , Animais , Citocinas , Adenosina Desaminase , Desaminação , Mesilato de Imatinib , Adenosina/farmacologia , Hipoglicemiantes , Inosina , Metformina/farmacologia , Palmitatos , Estresse Fisiológico , Glucose , Fator 15 de Diferenciação de Crescimento/genética
18.
Brain Behav Immun ; 117: 224-241, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244946

RESUMO

Glial activation and dysregulation of adenosine triphosphate (ATP)/adenosine are involved in the neuropathology of several neuropsychiatric illnesses. The ventral hippocampus (vHPC) has attracted considerable attention in relation to its role in emotional regulation. However, it is not yet clear how vHPC glia and their derived adenosine regulate the anxiodepressive-like consequences of chronic pain. Here, we report that chronic cheek pain elevates vHPC extracellular ATP/adenosine in a mouse model resembling trigeminal neuralgia (rTN), which mediates pain-related anxiodepression, through a mechanism that involves synergistic effects of astrocytes and microglia. We found that rTN resulted in robust activation of astrocytes and microglia in the CA1 area of the vHPC (vCA1). Genetic or pharmacological inhibition of astrocytes and connexin 43, a hemichannel mainly distributed in astrocytes, completely attenuated rTN-induced extracellular ATP/adenosine elevation and anxiodepressive-like behaviors. Moreover, inhibiting microglia and CD39, an enzyme primarily expressed in microglia that degrades ATP into adenosine, significantly suppressed the increase in extracellular adenosine and anxiodepressive-like behaviors. Blockade of the adenosine A2A receptor (A2AR) alleviated rTN-induced anxiodepressive-like behaviors. Furthermore, interleukin (IL)-17A, a pro-inflammatory cytokine probably released by activated microglia, markedly increased intracellular calcium in vCA1 astrocytes and triggered ATP/adenosine release. The astrocytic metabolic inhibitor fluorocitrate and the CD39 inhibitor ARL 67156, attenuated IL-17A-induced increases in extracellular ATP and adenosine, respectively. In addition, astrocytes, microglia, CD39, and A2AR inhibitors all reversed rTN-induced hyperexcitability of pyramidal neurons in the vCA1. Taken together, these findings suggest that activation of astrocytes and microglia in the vCA1 increases extracellular adenosine, which leads to pain-related anxiodepression via A2AR activation. Approaches targeting astrocytes, microglia, and adenosine signaling may serve as novel therapies for pain-related anxiety and depression.


Assuntos
Dor Crônica , Neuralgia do Trigêmeo , Animais , Camundongos , Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Modelos Animais de Doenças , Hipocampo , Microglia
19.
Cell Biol Int ; 48(4): 450-460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165230

RESUMO

Osteomyelitis is a bone destructive inflammatory disease caused by infection. Ferroptosis is closely related to multiple inflammatory diseases, but the role of ferroptosis in Staphylococcus aureus (SA)-induced osteomyelitis remains unknown. In the present study, we found that SA treatment promoted the accumulation of iron, Fe2+ , lipid peroxide, and malondialdehyde, increased TFRC and reduced FTH1 and GPX4 to trigger ferroptosis in rat bone marrow mesenchymal stem cells (BMSCs). Interestingly, increased level of N6 methyl adenosine (m6A) modification along with decreased expression level of m6A eraser FTO were observed in SA-induced BMSCs, while upregulating FTO alleviated SA-triggered ferroptosis and protected cell viability in BMSCs. Mechanistically, MDM2 was identified as a target of FTO-mediated m6A demethylation, and FTO upregulation promoted MDM2 instability to downregulated TLR4 signal and elevate the expression of SLC7A11 and GPX4 in SA-induced BMSCs. Functional recovery experiments verified that overexpressing MDM2 or TLR4 reversed the inhibiting effect of FTO upregulation on ferroptosis in SA-treated BMSCs. Additionally, FTO upregulation restrained ferroptosis and pathological damage to bone tissue in SA-induced osteomyelitis model rats. Altogether, m6A eraser FTO alleviates SA-induced ferroptosis in osteomyelitis models partly through inhibiting the MDM2-TLR4 axis.


Assuntos
Ferroptose , Células-Tronco Mesenquimais , Osteomielite , Animais , Ratos , Staphylococcus aureus , Receptor 4 Toll-Like , Osteomielite/tratamento farmacológico , Adenosina/farmacologia
20.
Psychopharmacology (Berl) ; 241(2): 401-416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996666

RESUMO

RATIONALE: Using routine synthetic drugs in the treatment of psychiatric disorders may have some restrictions due to serious side effects and pharmacoresistance. Some natural agents may be promising alternatives in this case. The neuroprotective activity of the neuromodulator adenosine and its receptor, A1 receptor (A1R) in the central nervous system has been mentioned in different studies. OBJECTIVE: We aimed to determine the anxiolytic, antidepressant and sedative effects of Japanese sake yeast as the first report. METHOD: Mice were subjected to a one-week stress protocol and concomitantly treated orally with sake yeast at the dose levels of 100, 200 and 300 mg kg-1 once daily for a week. The anxiolytic, antidepressant, and sedative actions of sake yeast were evaluated with the related tests. RESULTS: In all dose regiments, sake yeast significantly improved functions in the EPM and FST. 200 and 300 mg/kg of sake yeast significantly increased sleep duration and reduced sleep latency. Anxiolytic and antidepressant-like activities of sake yeast were maintained by the injection of ZM241385 (15 mg kg-1), a selective adenosine A2AR antagonist but completely counteracted by the injection of 8-cyclopentyltheophylline (10 mg kg-1), a selective adenosine A1R antagonist. 300 mg/kg of the yeast significantly increased the BDNF levels. Amygdala corticosterone levels did not show any significant changes at any dosage. Amygdala TNF-α, IL-6 and IL-1ß levels also decreased significantly with all the sake regiments compared to the control group. CONCLUSIONS: We conclude that oral sake yeast supplement exerts a neurobehavioral protective effect predominantly by activating central A1Rs.


Assuntos
Ansiolíticos , Saccharomyces cerevisiae , Humanos , Camundongos , Animais , Ansiolíticos/farmacologia , Bebidas Alcoólicas , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Fermentação , Ansiedade/tratamento farmacológico , Ansiedade/prevenção & controle , Adenosina/farmacologia , Antidepressivos/farmacologia , Receptores Purinérgicos P1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...